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Kabaldin Yu.G., Oleinikov A.1.

Mathematical and computational modeling
High-performance processes of a machining

KABALDIN Y.G., OLEINIKOV A.L

Introduction. For the last time an universal approach in the study of a machin-
ing was offered [1]. On the basis of this method an experimental information about
regularities of a time-space ordering and ascertaining presence of dissipative struc-
tures in cutting systems was explored and analyzed. The processes of ordering arise
due to interaction of a great number of elementary subsystems. Bonding contact pads
of the instrument with the work material are the most important. In turn, this system
is a multiscaled non-linear dynamic system having its own intrinsical time-space or-
dering.

Such a way, at near-contact material layers of an instrument and its part level
coming into being of rotational structures of metal motion in the cutting edge of shav-
ings and periodic structures of a contingence of a layer to be cut with instrument’s
forward surface is ascertained. At a level of phases and grains components forming
contacting materials structures of new phases in a material being processed (for in-
stance, trostite-perlite-ferrite in a sole of a growth from steel) and local separation
(tearing off) structures of carbide grains in a surface layer of the instrument as well
may arise. On a crystal’s scale one could see the formation of fragmented dislocation
structure in hard alloy’s grains and also regular slipping strips. Self-formation of
these structures takes place in oscillating fields of instrument’s and perform’s vibra-
tion by action of a great loadings according to the scheme pressure + shear.

Formation of similar structures in bodies of friction was also observed during
experiments [2]. It results from [2] that increasing of pressure entails a transition
from a slippage of contact to plastic shear. Under this instead of so-called tooth con-
tacts structures as an areas of a high pressure taking up compressive forces arise. In
such an areas the laminar nature of a plastic flow gets broken and rotational structures

4



of a plastic particles driving come into being. Being generated by critical velocity of a
plastic deformation, mentioned areas auto- accelerated extend with augment of shear
and dissimilarity of stress on the contact velocity and also relax in a few seconds fur-
ther.

Thus the adduced results of experimental investigations testify to origin of
multiscale dissipative dynamic structures on contact instrument-work material. Their
research is obviously connected with investigation of the dynamics of origin and evo-
lution of a new structure. In the [2] there is a description for some of conditions of
appearance of structures of irregular pressure in plastic contact. In the [3] the classifi-
cation description of a wear of bonding contact pads of the instrument is fulfilled:
adgesionly-fatigue, abrasive, chemical-abrasive, diffusive and oxidizing. In the [4]
the molecully-mechanical theory of friction and the theory of fatigue outwearing ex-
plicates which assume sliding contact are developed.

In this work, according to the approach [1], mechanisms of a synergetic of evo-
lution of new structures at the all-scale levels of outwearing of cutting tool’s surfaces
on the basis of the theory of a melting and solitons are considered.

1. A mathematical model of a metal’s melting in cutting edge layer.

Let’s consider a cutting wedge (fig 1.1) pressed by force P to a strip being dis-
sected by the wedge on two parts and driven from a stationary value by speed U.

At wedge’s friction
against mobile dissected
parts of a strip (cuttings and
the work surface) heat is get-
ting out that involves melting
of a metal in cutting edge
layer by width 6.

When speed of cutting
U is enough all the fluid in
the layer 1s entrained by
these parts of the strip in the
direction of their motion.

Fig. 1.1 Owing to viscosity the speed

of particles of a melt is con-

verting in a zero on a surface. The transition from zero speed on a wedge to full speed

U on the external boundary of a layer is getting accomplished in a very lamina of a

melt. In this layer the velocity gradient in a perpendicular to cutting edges direction is

too large and viscosity influences on flow of a melt very much. According to experi-

mental data the width of a melt 6 is very small against size of bonding contact pads of
a wedge and dissected parts of the strip.

In the case in point one may reckon the melt an incompressible fluid as usual.
Then the mass of a melt affluent in unit of volume is equal to a mass of a melt im-
plied from the same volume. Therefore continuity equation (incompressibility) of a
melt looks like




@+@:0, (1.1)
ox Oy

where u and v — are components of melt speed along an axis x and y (fig. 1.1).

The dynamical equations of a melt express equality of product of a particle
mass of a fluid on its convection acceleration taking into account migrations of parti-
cles, and forces, operating on it stipulated by pressure and viscosity.

Within bounds of d-layer temperature differential is small and in fact coeffi-
cient of viscosity u is constant in all layer. Then the Navier-Stokes equation of driv-
ing of a melt in a layer in a direction of an axis x looks like:

ou du) oOP (o*u d%u
plu+v ==y o+ (1.2)
ox 0oy ox ox’ ayz
in a direction y:
ov ov) P [8*v d%v
plu—+v_—|=—+pu ——+_ (1.3)
ox 0Oy oy ox~ Oy

As the width of a melt ¢ 1s small, and the speed v is equal to zero on cutting
tool (CT), the transversal flow rate of a melt has the order 6. That’s why magnitudes
Ov/Ox u 82\// ox* and have the same order & in a layer. The parallel to CT velocity

component by virtue of viscosity 1is equal to zero too on the wall of CT. On the
boundary y = S(X) of a melt in treated metal this component coincides a cutting speed

U. Therefore magnitude du/Oy has the order 1/8 and magnitude 82u/ dy* — order

1/8%. Taking into account these estimations for a lamina of a melt obviously one
may lower an addend Ozu/ ox* as a small against azu/ dy* in an equation (1.2).

The similar estimations of addends of an equation (1.3) without taking into
consideration small addends it’s transformation into following simple equality

op _

0 (1.4)
oy

It derives from a condition (1.4), that the value of pressure in a layer doesn’t

depend on coordinate y, i.e. in a transverse to a layer direction the magnitude P re-

mains constant in fact and in every point of a perpendicular to a surface CT section

the value of pressure is the same in a melt. Taking into account equality (1.4) and

mentioned estimations of addends Prandle’s equation for a boundary layer derives
from (1.2):




Gu ou) P d%u
plu_—+v_—|=——+p— (1.5)
ox 0y ox 8y2

The considered flow of a melt is not isothermal. The heft flow lays out me-
chanical flow. For the sake of determination of temperature’s distribution in a layer
it’s necessary to connect dynamic equations of motion with a heat conduction equa-
tion. The heat balance of a driven particle of a melt is determined by its internal en-
ergy, thermal conduction, convection of heat by means of flow and origin of heat ow-
ing to internal friction. The equation of an energy balance answers a thermodynamic
energy conservation law. According to this law the change of the total of magnitudes
internal and kinetic energy of a particle is equal to the total of powers of forces, af-
fixed on it and flow rate of energy brought from the outside to a particle. In our prob-
lem we consider the flow of heat being proportional to a lapse rate of temperatures T
according to the Fourier’s law as an external source of energy. The power of internal
forces is calculated as a dot product of viscous stresses tensor and tensor of strain
rates. At a melt incompressible all of this power turns to heat in an irreversible way.
The change of internal energy is proportional to a change of temperature when heat
capacity at constant volume C, is a constant of proportionality. A values of thermal
conductivity k in the Fourier’s law and heat capacity C, are constant in a narrow layer
practically. Such a way the equation of heat (energy) spreading in a layer looks like

[ oT 6TJ (82T asz [(aujz (avﬂ
pCylu—+v_— =k -+ pe 2 +— | |+
ox Oy ox* oy’ Ox 0y
N 8\/ ou) 8u ov
8x 6y 3lox 5‘y

At small width of a melt the addends containing magnitudes 82T/ ox?, ou/0x ,
ov/0y and Ov/0x in an equation (1.6) are small in contrast to remaining terms.

Therefore one may record an equation of heat’s distribution in a narrow layer in the
simpler way:

2
(TIPS

Thus, the flow equations of a melt in a shear zone of CT represent a continuity
equation (1.1), equation of motion (1.5) and energy equation (1.7), which will be re-
wrote in the form of the following system:

8u8v
8X@y

=0




ou  ou oP  o%u
pju—+v—|=—+u— (1.8)
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The equations (1.8) to be integrated at boundary conditions of an adhesion of a
viscous melt to CT’s edges

u=0,v=0, at y=0 (1.9)

On the boundary between a fluid and work material y = §(x) is component of
speed u which is parallel to an edge in proportion to cutting speed U,

u=kU, when y=35(x) (1.10)

The density of metal being melted varies just a little so we may consider a fluid
density in a layer 0 to be equal to the one of work material.

On the boundary of a melting the temperature field should fit a condition of
equality to a melting temperature of metal T,;, and perpendicular to the edge heat
flow component must be equal to an entrained effective melting heat quantity

T=T ka—Tz—puL, (1.11)
Oy

B 1 ) )

Effective melting heat L is equal to the total of a real melting heat L’ and heat
needed to increase initial temperature of treated metal from T’ to T,

L=L"+c(T,-T), (1.12)

where ¢ — is metal thermal capacity.
The surfaces of edges in our problem may be considered to be heat-insulated,
SO

oT
=0 aty=0 (1.13)
oy

Equality to zero of a bed depth of a melt in a conterminous to vertex CT index
point should be added to conditions (1.9) - (1.13):

0=0 atx=0 (1.14)




Such a way the mathematical sample of shear and melting zone is obtained
which is represented by system (1.8) of a melting layer equations and boundary con-
ditions (1.9) - (1.14).

2. When it’s cutting the major role belongs to processes in a layer to be cut off
and to once on a perform’s job surface nearby a cutting edge. In cutterside layers an
intensive strain and transfering of a mechanical energy in thermal one take peace.

The crude estimate of rising metal’s temperature may be got as result of (2.1)

AT =57 2.1)

where 1, — yield stress, y — plastic deformation of relative shear and C, — heat capac-
ity when v is constant.

Having put T, =3-10°N/m?, C, =5000J/(m’K) and y=20, as it is when
strains of relative shear nearby a forward edge take peace, we obtain AT =1200K,
that is close to a melting temperature (1500 C°).

The question if a thin molten layer in an environ of a cutting edge can be
formed will be considered in the base of the classical laws of viscosity and heat inter-
change by using of integral methods for a boundary layer.

In general when molten metal’s flowing along a wall the width of a tempera-
ture boundary layer 8y exceeds the one of a viscous bound layer 8, because of a
Prandtle number Pr’s smallness. In the case in point a molten layer’s width &y may

exceed or be equal to a viscous layer’s 8, . Let's define conditions that allow both of

these cases separately for back and forward edges of the tool.
Back edge

If 8y 28, for any x; (see fig. 2.1), the viscous boundary layer progresses as if

it did in incompressible viscous fluid in an environ of a front edge of a plate while
stream’s moving along this so long as the incident flow’s speed may be considered to
be constant and equal to cutting speed U present problem. So one may use a precise
solution of equations (1.1), (1.5) for a similar Blasius’s problem [5] that gives

~ & [HX1
o, ~5 p—U , (2.2.)

where n — dynamic viscosity, p — density.

Viscosity of fluid metals near a melting temperature p~2.5-10 Pa-s. The

speed’s reference magnitude in the case in point is equal to U=10m/s. It follows
from (2.2) that




d d
~ 2 =5 b e > _0.03 (2.3)
A/ Xq Reb b A Reb
where Rey, = Ubp _ Reynold's number, b width of a bevel of a wear.

For the sake of molten layer &y ’s estimation we’ll analyze pursuant to an

equation (1.6) and (1.9), (1.11) conditions the balances of heat in an integral
approximation:
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X2

Fig. 2.1. The flow’s scheme of layer to be cut and work surface.
(In a drag of figure - graph of distribution of speeds in parallel to edges)

Sy o, ou 2
d [puC, Tdy, ~dx, | u[} dy,
0 0 aYI

Meanwhile the internal energy of a molten layer C,T represents basically
melting heat, so the heat balance is:

Sy o, ou 2
d IpuL’dyl ~ dx, I u() dy, (2.4)
0 o \0Y
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Here L' — specific melting heat, p(du/dy, )2 — volumetric heat source manufactured

by viscous friction. The left part of equation (2.4) is an increment on X; of heat flow
entrained by molten metal as a latent heat of a melting. In approximated equality
(2.4) it’s considered that L' = C, T and heat needed to increase metal’s temperature to

melting one, it’s additional heating after being smelted-down, and heat transfer
through breaking points of the upper and lower bounds of a layer &y as well aren’t

taken into account. That’s why width’s estimations of &j; obtained below may be

taken for the upper once.
In case 8y >0, we may consider the velocity profile in a viscous boundary

layer to fit a distribution for a laminar flow:

u = 0,3Uy, Up (2.5)

KX

So there’s an equation linking widths of a molten and viscous boundary layer

through a back edge
, 0O U |[pU o
el e (2.6)
4x, 3L"\px; Oy

Having accounted change 8, to fit relations (2.2), we’ll get an equation for a

molten layer width’s definition

'H:5H+5M[{.1 2.7)
4x, 3pL’" oy

Next relation answers to this equation

SpU
Oy =2 X 2.8
H 4/3pL,«/ 1 (2.8)

If x = b then (2.8) involves the next estimation:

O f e = 2 > b
3L'Re,

(2.9)

The obtained relation (2.8) and estimation (2.9) are right under condition that
width of a molten layer exceeds the one of a viscous boundary layer. Let's find a con-
dition for a cutting speed’s magnitude, which allows to implement the mentioned
mode. To make it an equation (2.6) should be rewrote as follows:
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Sy |_ 1oy U MUI_E’I;g,'M 2.6)
S, 4x, 6, 3L\ px; 8y o,

Let’s consider the derivative sign in the left part of equation for a point, when
Oy =0, . As the derivative is positive so width of a molten layer grows along x;

faster than one of viscous boundary layer.
By using (2.2) it follows from (2.6 ') that 6 =28, when

UZ>4L (2.10)

For iron L'=280-10’J/kg and Oy 26, when U>1000m/s, for cuprum

L'=200-10°J/kg and U > 600 m/s, for alead L'=20-10°J/kg and U >300 m/s.
Let’s analyse a case U <2-/L', when Oy =0, = 6. A boundary-layer profile of

speeds we’ll consider to be linear. The integral balance of heat generated and en-
trained will look the next way:

U 2
6(0,58pL'U)zp8(6j dx,

Having fulfilled some relevant transformation we’ll get the next:

2
§_ab U

= . 2.11
0 L(Reb ( )

The next relation fits this equation:

_, b U
5=2 Reb@ﬁ, (2.12)

It results from (2.12) that

) U

max :2

b \/Re, L

Having put 5=10"m in iron when a cutting speed U =10 m/s it results that
Omax = 0,25 mem.

Let’s estimate temperature in a boundary layer. A heat flow being extracted by
molten metal from a cut [0, X,], 1s evaluated under the formula

13



Usz!

=0,50pL'U=—+—_/bx
Q P T’Reb 1

(2.13)

When the edge is heat-insulated the heat flowing in the direction of a metal
layer in which a melting takes place is determined as follows:

q=9Q . AT (2.14)
dx,  8/2

where A =pC, /Pr — thermal conductivity, C,, — specific heat, Pr — Prandtle number,
AT =T -T,,, T —average temperature in a boundary layer.

It results from (2.13) and (2.14) that

2
AT~ Y pp 2.15)

2C,
According to (2.15) molten metal’s overheating temperature is constant
through a bevel of a back edge. A rate for fluid aluminum (C, =10847J /(kg-K);

Pr=0,037) entails AT = 0,002°K, so overheating in a layer is completely inappre-
ciable and its mean temperature is practically equal to a temperature of a melting.

Forward edge

In case &y > 9, for every X, the viscous boundary layer progresses as if it did

in incompressible viscous fluid in an critical point environ when stream’s flat running
against a wall as one may consider a critical point to be disposed on a cutting edge
(fig. 2.1). So we may use a precise solution for equations (1.1), (1.5) in a similar
problem [5], that involves:

5 =24 | M (2.16)

where k. — factor of truncation of a cuttings, 1 — length of a so-called stagnant zone
(fig.2.1).

According to (2.16) a viscous boundary layers width doesn’t depend on coor-
dinate X,, 1.e. it doesn’t vary through an edge within an interval /. Formula (2.16) may
be rewrote as follows

2.17)
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k U/

C

where Re,| = P Reynold's number for a forward edge.

In case cutting speed’s 10m/s the formula (2.17) entails

)
T”zO.Ol

Then let’s account a case which may be realized when cutting speed’s being custom-
ary or namely when the molten layer 6, =8, =9 is boundary. So, similarly to (2.12),

there’s a relation
1

=2k U |— 2.18
N (2.18)
and formula
d U
max — zk ,
1 /L Re,
that involves §_, =95mcmin iron as k, =0.5, U=10m/s, 1=2.5-10"m, i.e., ac-

cording to (2.12), the molten layer’s width on a forward edge may exceed the one on
a back edge more than fourfold. Thus, as it was in (2.15), one may conclude that
metal isn’t overheated to temperature exceeding one of a melting in molten layer.
Friction stresses in melting site of a back edge are

b
T, = lj“(éu] dx=0.5 uUpL' : (2.19)
b 0 0y, y1=0

Similarly for a forward edge

1
T, = Hu( ou J dx = 0.5«/ukCUpL' : (2.20)
y2=0

0 ay2
In case U=10m/s for iron it’ll be
T, = 3700%, T, = 2600%.
m m

3. Computational simulation of influence of magnitude of pressure on pa-
rameters of oscillations of a chisel. The description of unsteady planes motion of an
incompressible fluid is set by values of a velocity term u = (u,v), density p and pres-

sure p, which are functions of explanatory variables — time ¢ and Cartesian coordi-
nates (x, ). The initial systems are consisting of one differential equations of conti-

nuity representing law of conservation — law of conservation of mass (volume)

div(ﬁ)za—%@:o, (3.1)
ox Oy
and equation of impulses (equation of a momentum) — conservation of momentum

law
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@+@Lvﬁ+lvp:g, (3.2)
p

where (ii-V): u§+v§, Vp = (px,py) — lapse rate of pressure in the given point
X y

of a layer, p — density of a layer, g = (O,—g) — vector of a density of mass forces,
g =const.

As the density is fixed and original vorticity is equal to zero, so the equation of
impulses (3.2) may be integrated with Cauchy - Lagrange integral as result

1

@, +5\VCD\2 + 24 gy =b(r) (3.3)
p

when b(¢) is an arbitrary function of time. One may account this function to be equal

to zero without violations of a generality because in the case of point a speeds poten-

tial as a function ® = (D(t, X, y) connected with components of a velocity term by po-

. . oD ob .
tential ratio: u=——, v=— exist.

ox oy
The continuity equation (3.1) for potential movements turns to an equation of
the Laplace
o, +P, =0 (3.4)

Thus, the system of vectorial equations (3.1), (3.2) is reduced to two scalar
equations (3.3), (3.4).

Edge conditions. In order to describe particular movement it’s necessary that a
solution of these equations in the given area, restricted by the instruments surface and
melts boundary in treated metal should be looked for. We’ll consider the layer being
analyzed to have even bottom conterminous to the boundary between the layer and
solid metal. When cutting speed is high enough every particles of a layer is carried
away by perform in a direction of its driving relative to the tool. So the tool’s oscilla-
tion may arise as a result of its slipping along the wave contact boundary with a layer
and oscillation of vertex of a cutting wedge in so with transiting on the boundary of a
layer by waves. The transition speed of these waves develops of a cutting speed V'
and natural speed V. of their spreading on a layers contact surface.

The plane y =0 having a boundary condition with an edge condition of not
seeping leak is picked out as a bottom

v=0 =0 (3.5)

On contact to the tool the pressure P = P(t, x) operates and the kinematic con-
dition of a coherence of a layers particles driving speeds on mentioned contact and

layers boundary itself is answered. Thus there’re two conditions on a contact with the
tool:

(ht -H/lhx)y:h =O, p‘y:h :Pa (3.6)

where the first equality expresses the kinematic condition, and second expresses dy-
namic one. Meanwhile the surface of a layers contact with the tool is described by an
equation y = h(t, x). As the pressure’s expressed by potential taken from the Cauchy

16



- Lagrange integral (3.3), the condition on tools contact with the surface may be writ-
ten by way of the potential

(h+®,h,),_, =0, (®t+%\®§+®i‘2+gyj __r (3.7)
y=h p

The mathematical sample presented allows to analyze contact pressures P(t, x)

influence on molten metal’s wave driving performances.
The solution of a problem (3.4), (3.5), (3.7) being set is reduced to an equation
originating from conditions (3.7). The value ¢ of potential ® on the boundary y =4

is entered. Substitution of this function in (3.7) involves two equations for ¢ and 4

functions, coming out which are written the following way
h+ho, +hA,p=0,

1 P
@, +§((Pi +(Pi)+gh+;:()9

according to theory of a shallow water [6].

The solution of these equations may be got under Bussineska & Kortevega — de
Freez’s approximation. However fixed of driving by which a velocity terms and pres-
sures fields don’t depend on time are steady.

The fixed wave process represents the stiffened dynamic configuration. It takes
much time to work out the steady flow as it’s an approximated sample piece of actual
movement.

The fluid stream is described by functions A(x, y) and ®(x, y). For this class of

flows the conservation laws are answered

jiCDxdyza (3.8)
; P

[(@2 @2 Jay = gn” +2(E—bjh+c (3.9)
0

with given constants a, b, ¢, where a — expenditure of a material in a layer, m?/s;
b — Bernoulli’s constant, m*/s*; ¢ — with - density function of impulse through a
layer, m’ /s*; P = P(x, y) — pressure profile on the boundary of a layer with the in-

strument, N/m?.
The second approximation following from the equations shallow water theory

reduced a problem set to an equation describing the tool with a melt contacts profile.

2
a

?h’z :—gh3+2(b—£jh2—ch—a2 (3.10)
p
An equations (3.10) solution describes so-called cnoidal waves (that are ex-
pressed by the way of an elliptic function cn heeding contact pressure P.

The external parameters of waves a, b, ¢ are reduced to two dimensionless:

_3.ge o 2 ga
4 p*° 8 b
which allow to get an equation (3.10) in the dimensionless form

: 3.11)
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y'? :—y3+3(1—£bjy2—36y+9. (3.12)
p

In an equation (3.10) new variables are entered according to substitution

h=2l, - %5 (3.13)

The functions y(x) required 1s got from an equation (3.10) as a quadrature and
set by the formula

1 _
Y= +(y3 —yzcn{?/yg —ylx,kjj, (3.14)

where the module k is determined by equality: &* = (y3 -V, )/ (y3 - )

On a fig. 3.1 - 3.7 the wave movements of a layer profiles by different contact
pressures are shown. Meantime the contact pressure changes answered the sinusoidal
law, 1.e. decremented from the maximum value to the minimum one first and then re-
turned to a primal value being augmented.

Analysis of results obtained shows that by contact pressures values being
maximum the regular periodic waves having quite large frequency (fig. 3.1) are to be
observed. By contact pressure getting reduced some oscillation frequency increasing
and considerable abatement of an oscillation frequency take place (fig. 3.2-3.6). By
the given changes of aircraft attitude periodicity of waves to be conserved but by
reaching some minimum pressure the contacts wave structure to be rebuilt namely
solitary waves of max amplitude called solitons (fig. 3.4) replace the regular periodic
waves.

The results obtained may be applied to solution origin of a growth gears con-
struction.
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The results of investigation presented to be used when cuttings arising process
and steadiness of processes of a machining processes [7] control systems being
worked out.
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CH+

Numerical modeling of fracturing of solids with cracks.”
Magola A.S., Oleinikov A.I.
Komsomolsk-on-Amur state technical university.

Now, for a solution of different engineering and technical problems the numerical
methods implemented on the computer are widely used. Among the numerical meth-
ods of a solution of boundary value problems it is good itself has recommended a
boundary elements method. Many practical problems of a fracture mechanics of a
rigid body concern bodies, which containing narrow cutaways, similar to a slit or a
cracks. For problems of such type effectively to apply variant of a boundary elements
method termed by a method of displacement discontinuity, which based on an ana-
lytical solution of a problem on an infinite plane x, y, the displacements in which

undergo constant on magnitude a discontinuity within the limits of finite segment [1].
This solution will match to an asymptotic of stressed at apex of crack.

On a base of the given method the computer program written on the high level lan-
guage C ++ (with usage of the compiler MS Visual C ++ 6.0) was implemented. Hav-
ing user interface of full value agreeable to the standards of modern applications writ-
ten for MS Windows 95/98/NT/2000/ME, the given program allows to calculate such

performances as discontinuities U, U y and stresses o, Opys Oy and also, on a

base already available, principal stresses ¢, , i, and 7., , which are evaluates by
the formulas:
O ax = 1/20' +0o,, \/1/2 —O'yy)2+0' 2,
Gmin:1/2 \/1/2 —ayy)era 2,

' Research carried out by financial boost RFBR (project 01-01-00921) and Ministry of Education Russia (project E00-
4.0-123).
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T = \/1/2 (O'xx — O'yy)z + O'xy2 :
and fracture function:

F,. =0.247+0,760, . -0,87°",
where

T =\/1/2[(0x _O'y)z +(‘7y —02)2 +(o. ‘Gx)2]+363y ’
o, :V(Gx+0y)9 0=0,%t0,+0,.

As an example with the help of the given program the task about an infinite body
with a crack testing intrinsic pressure was solved. This task is assign by the following

4

=210
4

-4-10

-610 *

-3.10 + 1

A -0.0011
Uy (x)

=0.0012

~0.0014

-0.0016

~0.00187

—-0.002~

Fig.1. Numerical and analytical solution for distribution of dis-
placement discontinuities.

conditions:

ny:O,—oo<x<oo,y=O,

Oy =7P>

uyzO,

x‘<b, y=0,
x‘Zb, y=0.

Besides, on infinity all discontinuities and stresses are equal to zero. An analytical so-
lution of this task for distribution of relative normal stresses along a crack (i. e. for
summarized disclosure) is determined by the formula

%@):—@pb@—xz/bz)”2 1)

For b=1,v=0.1, p=1, G= 10° and at separation of a crack on 10 and 20 boundary

elements was obtained solution, which is represented in a fig. 1. On it are figured the
graph of exact distribution of displacement discontinuities, which was defined ac-
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cording to (1), and the points (in a figure they are marked are figured as daggers for
20 boundary elements and as circles for 10 boundary elements) approximate solution
obtained with the help of the program. From a fig. 1 it is possible to conclude, that
the method of displacement discontinuity overstate values of relative stresses of sur-
faces of a crack, but in accordance with magnification N (i.e. number of boundary
elements) the results come nearer to exact solution.

Having received a solution on boundary, the program further allows to evaluate

stresses o,,, 0,,, 0,, and discontinuities u,, u, in any area beyond the bound of a

crack.

Thus, the program allows to model behavior of a material containing one or more
cracks, under action of arbitrary loads on the bound of a material and crack.

As input data of the program the following performances appear: the coefficient of
Poisson and Young's modulus describing physical properties of body, condition of a
symmetry, initial stresses, geometry of an outline and (or) crack(s), type of boundary
conditions (in stresses, in displacements or blended) both normal and tangents of a
component of stresses and (or) displacements (depending on a type of boundary con-
ditions) and, at last, coordinates of rectangular area (in the given version area rectan-
gular, but given circumstance is not limitation and in further the possibility of the rep-
resentation of area of the arbitrary form) outside of boundary can be implemented, in
which it is required to calculate stresses both displacements and amount of points in
the given rectangle on a horizontal and vertical, in which the stresses and displace-
ments will calculate.
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Fig.2. Diagram of o,, in color.

Geometry of an outline and crack (one or more), and also normal and the tangents of
a component are introduced as customary strings the containing functions of one ar-
gument (x or y) and further brought strings of the formulas are treated by the program,
using the special module permitting on the noted formula to receive a value of the
function at any argument. Thus, knowing the function circumscribing an outline or a
crack, it is possible to set the arbitrary forms of an outline and cracks.

As output data the program produces a set of color or only contour (at the request of
the user) diagrams of each of the listed above performances (displacements and
stresses) in an arbitrary scale. The diagrams are created by the following principle:
there are minimum and maximum values of each component the obtained interval of
values is divided on an amount of colors and each of obtained subintervals the color
and further is put in correspondence, depending on that in what of subintervals the
value of the component in each concrete point of area out of bounds hits, all points
everyone by particular color are mapped. In case of the contour diagrams the lines
bounding areas obtained subintervals are mapped only. As an example the diagram
o, in color (fig. 2) and contour variant of the same diagram (fig. 3) for the task

about corner of the cutting tool with two microcracks for an edge is reduced. In a case,
when the contour diagrams for definition are created where to be this or that range of
values, the following mechanism is used: using a mouse pointer, it is possible, click-
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Fig.4. Contour diagram of o, with selected interval.

ing on for the necessary interval, to see interesting area, isolated by particular color
(fig. 4).

All brought in input data can be saved in separate files, which in appropriate way,
register in an operating system (MS Windows). Any of the obtained diagrams is pos-
sible is to saved in the file of the BMP-format (bitmap).

At build-up of the contour diagrams it is very difficult to foresee and «to "force" the
program properly to place scores of each of subintervals and consequently in the pro-
gram the small designer permitting to place is implemented to translocate and to de-
lete scores. The obtained diagram it is possible, again, or to save the file of the special
format, by the defined given program (that it was possible to change arrangement of
scores), or to save in the BMP-file.

Researching facilities of the given program, the computing experiments were carried
out with the purpose of study of a stressed-deformed state for an edge of the cutting
tool at origin in it of one and more cracks. The numerical modeling of development
of these cracks has allowed to describe the mechanism and to research the process of
fracturing of a cutting edge.
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A.R.Kudelko

ANALYSISAND OPTIMIZATION OF ENERGETIC CHARACTERISTICS
OF FREQUENCY-REGULATED ASYNCHRONOUSELECTRIC DRIVES

A. R. Kudelko,
K omsomolsk—on—-Amur State Technical University, Russia

Electric drives based on asynchronous engines with short-circuited rotor the ro-
tation velocity of which is guided by changing amplitude and voltage frequency of
the stator are widely used in practice as executive automatized drives for different
production machinery.
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From the list of technical and economic characteristics which define the effi-
ciency of electric drive as a whole and its engine as well, of great importance are en-
ergetic indices of an asynchronous electric engine in this case. To the latter we should
refer efficiency and factor of power. For the drives operating mainly in long-set rou-
tines, the optimization of these indices ensures certain advantages as in view of de-
creasing losses in engine as well as in elements of power source for the asynchronous
engine and circuit, decreasing additional load of them with electric currents con-
sumed by the engine.

The paper presents analysis and examination of the possibility for providing
optimum combination of Efficiency and Power Factor of the asynchronous engine in
static routine of work with amplitude-frequency regulation by the rotational velocity
of its rotor. In connection with this we introduce the occasional notion of the general-
ized energetic index of Asynchronous Engine that is determined as product of Effi-
ciency and Power Factor taking into consideration the fact that the best energetic
characteristics of the engine identically correspond to the largest (closer to 1) values
of these quantities.

The generalized energetic index accepted in our work and its optimization in
static routine of work of asynchronous engine enabled to deduce the law of regulation
of the engine as dependence of absolute sliding from relative frequency of feeding
voltage ensuring rational combination of efficiency and power factor of the engine.
Using this dependence enables to synthesize the corresponding laws of changing am-
plitude and frequency of the voltage for the engine’s stator, to define the structure of
the frequency-regulated electric drive system with executive asynchronous engine
and characteristics of the regulation system elements.

The investigation of the digital model of the synthesized system of electric
drive confirmed its increased energetic indices in static routine of work and expedi-
ency of using the laws of regulation obtained in practice of constructing frequency-
regulated electric drives with asynchronous engines.
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A.R.Kudelko, A.V.Guschin, 1.P.Dudchenko

SENSORS OF COORDINATESCHARACTERIZING ENERGETICS OF
ROUTINE OF WORK OF ELECTROMECHANICAL SYSTEMSA. C. AND
THEIR USAGE IN INVESTIGATION AND CONSTRUCTION OF FRE-
QUENCY —REGULATED ASYNCHRONOUSELECTRIC DRIVES

A. R. Kudelko, A. V. Gushchin, I. P. Dudchenko
(Komsomolsk—on-Amur State Technical University, Russia)

Experimental research of energetic indices and characteristics of elements and
systems of electromechanical transformation of a. c¢. energy, and also the develop-
ment and creation of frequency-regulated asynchronous electric drives with optimiza-
tion of their energetic indices account for the necessity of forming signals which
characterize energetic coordinates of transformers, executive engines and electric
drive systems as a whole.

The Report considers the questions of coordinate sensors construction which
characterize energetics of routine of work of elements and systems of electrome-
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chanical transformation of a. c. energy citing as an example a frequency-regulated
drive the executive organ of which is an asynchronous engine with a short-circuited
rotor. The sensors of initial coordinates have been determined, they are subjected to
direct measurement; the algorhythms and transformational structures of signals into
signals received from them which characterize the energetics of the routine of work
of the frequency converter, engine, electric drive as a whole.

Voltage and currents of the stator (their frequency, acting and instant moments),
rotor’s rotation velocity and also emf of stator gained with the help of additional
windings on the engine’s stator — are used as primary coordinates. The examination is
also given to the algorhythms of getting information (signals) characterizing the load-
ing routine of electric drive, its energetic characteristics — coefficient of power, effi-
ciency, their product, phase differencies between voltage and current, and other pa-
rameters.

There are presented here examples of using the developped devices for investi-
gation and construction of systems of frequency-regulated electric drive with asyn-
chronous engines.
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Kuznetsov V.P.

1. T.
1973
2. Maevskii 0.A.
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3. Kuznetsov V.P. No.2162777

AC RECTIFIER POWER COEFFICIENT IMPROVEMENT
V.P. Kuznetzov

One of the main phase controlled thyristor rectifiers disadvantages is that of
sharp power coefficient deterioration at output voltage drop. Many times there were
offered to consideration a number methods to cross this disadvantage. The whole set
of the methods can be divided into two main groups:

» Use of complementary devices aimed for reactive power compensation.
* Use of specially purposed methods of thyristor control different from an ordinary

phase one;
Regarding the second case thyristors may be switched by means of either natural

or forced commutation. Anyway all the aforesaid methods are generally not of unique
nature and are used for rectifiers processing under certain conditions only.

Proposed bellow is the original method of thyristor rectifiers' power coefficient
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improvement. The subject of the method lies in the fact that capacitors shunting half
of the rectifier-type bridge valves are to be connected up. This way the capacitors are
not AC (which is a usual method of reactive power compensation) but DC connected.
Capacitors' recharge current causes a reactive power advance component, that com-
pensates the exfoliating one, produced by a thyristor rectifier.

This method is the most convenient to be used for packages with dropping exter-
nal characteristics, i.e. for those processing in the regime of current source not volt-
age. The packages referred may be those with electroplating and welding equipment
as well as storage batteries charging devices. The described above method has been

granted with a patent.

Supplemential information

1. T. Takewty "Theory and Application of Valve Chains for Engine Control", StPe-

tersburg, 1973.
2. 0. A. Mayevsky "Energetic Indicators of Valve Converters", Moscow, 1978.
3. V.P. Kuznetzov Power Source for Manual Arch-Welding. RF Patent Ne 2162777.
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Semashko N.A., Bashkov O.V., Marin B.N., Murav’ev V.1., Frolov A.V.

OT-4

Acoustic emission as a tool of research the process of deformation and prediction
thelimit material characteristic

Semashko N.A., Bashkov O.V., Mar’in B.N., Murav’ev V.I., Frolov A.V.

(Komsomolsk-on-Amur aviation company,Komsomolsk-on-Amur state technical

university)

There are results of research of defect structure evolution in titanium alloy
samples “OT-4” with one-axis stretching and using modern achievement of the
acoustic emission method in the paper. Possibility of consideration the stages of
process of damage accumulation in alloy, connected with change of mechanism of
deformation and destroying alloy, with acoustic emission method is shown.
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Klimash V.S.

PRINCIPLES OF MAKING TRANSFORMER-AND THYRISTOR- BASED
COMPENSATORS OF VOLTAGE DEVIATIONSAND REACTIVE POWER
WITH FOUR-QUADRANT CONTROL

Vladimir KLIMASH
State Technical University of Komsemolsk on Amur
Komsomolsk on Amur (Russia)

In this paper smooth pulse, magnitude and phase control of a booster transformer
by means of thyistor converter synchronized with supply network i s proposed to en-
sure reactive power compensation and to improve dynamic characteristics, mass and
sizes. The converter has a DC circuit and is made on basis of commercially produced
frequency converter. In the new device two mutually complementary functions are
combined: regulation (stabilization) of load voltage and the network's reactive power
compensation.

The necessity to proliferate means of consumers voltage stabilization and supply
network reactive power compensation is clearly defined with requirements of power
quality and its economy. The solution of this problem acquires particular urgency for
power supply systems with extended power transmission lines and variable nature of
the load. This can be attributed to all the industrially developed countries with vast
territories and considerable distances between consumers and power supply centers .

Unlike devices known in the world practice in the proposed device two comple-
mentary functions are combined : complete compensation of reactive power and sta-
bilization of voltage independently of supply network external characteristic slope
and the value and the character of the load.

Four- quadrant forming of the additional voltage vector in the orthogonal coordi-
nate system has simple realization and better shape of the output voltage . Besides,
this way in comparison to vector forming in polar coordinates also has a disadvan-
tage . In case of orthogonal coordinates two booster transformers are used, and their
total power is proportional to the arithmetical sum of the square triangle's sides , and
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at the same time in case of polar coordinates one transformer is used , and its power
is proportional to the geometrical sum of the same square triangle's sides.

This fact enables decreasing mass and sizes of the transformer equipment of the
device when using polar coordinates.

As for complexity of inverters control and the compensator regulation unit the
following should be mentioned: in case of orthogonal coordinates the inverters con-
trol system is more complex, and in case of polar coordinates so does the unit of the
whole device regulation.

Control system performs an operation of shifting of control pulses' phases on
outputs. Control pulses on I st and 2nd outputs are shifted respectively by angles a
and p-a in regard to initial phase P . which is regulated by unit regarding network's
voltage.

The first and the second three-phase inverters convert the rectified voltage to
two AC voltages .

The vectors of the first harmonics of these voltages are shifted by common ini-
tial phase P in regard to network's voltage. One of these vectors is regulated in phase
by angle a, and the other is regulated by angle p-a. Due to the fact that inverters and
are connected with secondary windings of the transformer on both sides, to the wind-
ings is applied the difference between the inverters' output voltages or the sum of
conjugate complex vectors with phase a, which are presented in a complex plane ro-
tated by angle P regarding networks' voltage. During the process of stabilization of
the output voltage, when the output voltage is lower (higher) than the previously set
(for example, nominal) level the recuperative rectifier operates in rectifier ( inverter)
mode and enables the transformer and the whole device to operate in voltage adding
(voltage subtracting) mode with consumption of additional energy from the network
(with recuperation energy to the network) .

RBFERENCE

1. Patent RU 2056692, 6 H02J 3/18, GOSF 1/30. Transformatorno-tiristornii kompen-
sator otkloneniy napryazheniy i reaktivnoi moschnosti / Klimash V. S. // Otkritya.
[zobreteniya. - 1996. - No. 8, p 263.

36



	1-1.pdf
	Ⅰ．コムソモリスク・ナ・アムーレについて

	1-2.pdf
	①高能率機械加工プロセスに関する数学・計算モデルの構築
	
	
	
	Kabaldin Yu.G., Oleinikov A.I.




	②クラックの生じた物体の破壊の計算モデリング
	
	
	
	Oleinikov A.I., Magola A.S.
	A.R.Kudelko（コムソモールスク・ナ・アムーレ国立工科大学）




	④交流電気機械系の作動態様のエネルギー特性を示す各座標を測定する　センサーと、周波数制御式誘導電動機の研究・開発作業にお
	
	
	
	A.R.Kudelko, A.V.Guschin, I.P.Dudchenko�（コムソモールス
	Kuznetsov V.P.




	⑥材料の変形過程を調べ、材料の限界特性を予測するツールとしての　　　発振音波
	
	
	
	Semashko N.A., Bashkov O.V., Marin B.N., Murav’ev
	（コムソモリスク･ナ･アムーレ航空公団、コムソモリスク･ナ･アムーレ国立工業大学、コムソモリスク･ナ･。




	⑦四象限制御トランス－サイリスタ式電圧補償器、同無効電力補償器の　　設計原理
	
	
	
	Klimash V.S.（工学博士候補助教授）






